
obob𝑐𝑜𝑛𝑑𝑜𝑟𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛
Release 0.0.9

Thomas Hartmann

Jun 02, 2022

CONTENTS

1 What is this? 1
1.1 An introduction to Cluster Computing . 1
1.2 How to create a python environment for you cluster jobs . 4
1.3 How to use obob_condor . 5
1.4 Automatically generating filenames for your jobs . 7
1.5 Reference . 10

2 Indices and tables 13

Python Module Index 15

Index 17

i

ii

CHAPTER

ONE

WHAT IS THIS?

You were probably directed to this python package / website because you are going to use the cluster of the group of
Prof. Weisz at the University of Salzburg.

Lots of the analyses we run uses lots of RAM and/or takes a long time to compute on a workstation or laptop. A cluster
(in general, not specifically this one) provides access to powerful computing resources that are shared between users.

In order to ensure a fair allocation of the resources, you cannot access them directly but instead define so-called
obob_condor.Job together with how much RAM and how many CPUs your job is going to need and submit that
information to the cluster.

The cluster then tries to allocate these resources for you and runs your job.

The software we use here is called HTCondor. It is a very powerful and complex piece of software. This package
makes it much easier for you to use the cluster by hiding a lot of the complexities.

If you are already familiar with our cluster infrastructure (because you are migrating from Matlab), you can skip the
first section and go directly to How to use obob_condor. Otherwise, get An introduction to Cluster Computing.

1.1 An introduction to Cluster Computing

1.1.1 Introduction

Welcome to the introduction of the HNC Condor. In order to use it efficiently, you have to be familiar with a few
concepts. I try to be as simple and short as possible and provide you with examples. But please bear in mind that
the information you find on this page is the absolute minimum! So be sure to understand it or drop by and ask. The
introduction will cover the following aspects:

1. What is a cluster?

2. How do I use the cluster?

1.1.2 What is a cluster?

General Remarks

In one short sentence: a cluster is a bunch of computers that are used by a bunch of people. These computers provide
resources, in our case CPU power and memory, to all users. These resources have to be distributed as optimal and fair
as possible between the users.

Here is a picture of how the system looks like:

1

https://htcondor.readthedocs.io/

obob𝑐𝑜𝑛𝑑𝑜𝑟𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.0.9

2 Chapter 1. What is this?

obob𝑐𝑜𝑛𝑑𝑜𝑟𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.0.9

As you see, your computer is connected to your Personal Analysis Machine (a.k.a. Bomber). All the Bombers are
connected to the HNC Condor Master Node. Through this connection, your Bomber tells the HNC Condor Master
Node that it wants it to do a job. You can think of a job as a python function or method that takes some parameters. The
Master Node also needs some more information, for instance, how much RAM your job will need. The Master Node
then collects all your jobs and the jobs of everybody else who wants to compute things on the cluster. It then asks the
HNC Condor Execute Nodes whether they have the resources for the jobs (i.e., enough RAM and CPU). If one of them
says yes, he will get one of the jobs and execute it.

Sounds complicated? Don’t worry! This obob_condor package makes it super easy for you!

About Fairness

Please always bear in mind that the Cluster is a resource that you share with all your colleagues. There are, of course,
ways to use the system in your advantage while putting everyone else at a disadvantage. Please just do not! This system
works best when everybody has everybody else in mind. And it also increases your Karma™.

As I wrote before, the HNC Condor Master Node collects all the jobs by all the users who want to use the Cluster and
then distributes it to the Execute Nodes. It tries to be as fair as possible in the distribution of the jobs. For example,
if two people are submitting jobs at the same time, it will make sure that both get half of the resources. However, the
Master Node cannot guess how many resources like your jobs need. So, you need to tell him and try to be as exact as
possible.

At the moment, the only thing you need to tell the Cluster is how much RAM your job will need. If your job consumes
more RAM, it will be put on hold, which means that it will stop being executed. If you specify too much RAM, less of
your jobs will run.

1.1.3 How do I use the Cluster?

If you want to use the cluster, all you need to do is to connect to your Bomber.

What is going on on the cluster?

To be able to monitor what is going on on the cluster, you first need to open a terminal. To do this, click on the
“Applications Menu” and then on “Terminal Emulation”. In the new window enter this command:

watch -n4 'condor_q -global'

You will see something like this:

-- Schedd: cf000016.sbg.ac.at : <141.201.106.7:9618?... @ 06/01/22 08:46:49
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE HOLD TOTAL JOB_IDS
bAAAAAAA ID: 46449 6/1 08:29 8 4 _ _ 12 46449.0-3
bBBBBBBB ID: 46450 6/1 08:32 _ 1 _ _ 1 46450.0
bCCCCCCC ID: 46451 6/1 08:46 _ 30 _ _ 30 46451.0-29

Total for query: 35 jobs; 0 completed, 0 removed, 0 idle, 35 running, 0 held, 0 suspended
Total for all users: 35 jobs; 0 completed, 0 removed, 0 idle, 35 running, 0 held, 0␣
→˓suspended

As you can see, currently 3 Job Clusters are running by 3 different users. Here is what some of the individual columns
mean:

1.1. An introduction to Cluster Computing 3

obob𝑐𝑜𝑛𝑑𝑜𝑟𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.0.9

Column Description
OWNER The username of the person who submitted the job
BATCH_NAMEEvery Job Cluster gets an ID which is show here
SUBMIT-
TED

Date and time on which the job was submitted

DONE How many of the jobs have completed. Sucessfully or not!
RUN How many jobs are currently running
IDLE How many jobs are waiting for resources to become available
HOLD How many jobs are on hold. If something went wrong, HTCondor might put jobs in this condition.

You can use condor_q -hold to find out what happened.
TOTAL Total number of jobs in the Job Cluster

How do I submit my first job?

Go to How to use obob_condor and find out!

1.2 How to create a python environment for you cluster jobs

1.2.1 Create a new python environment and make sure obob_condor gets installed
in it

Open a terminal and navigate to your folder on /mnt/obob:

cd /mnt/obob/staff/thartmann

Now create a new folder where you want to store the code and the environment:

mkdir my_obob_condor_test
cd my_obob_condor_test

Create a file called environment.yml. This file lists all the conda and pypi packages your project needs. Take a look
here for a description. For this tutorial, it should look like this:

channels:
- defaults
- conda-forge

dependencies:
- pip
- spyder
- pip:

- obob_condor

You can use any text editor you like, but if you are connected via X2go or remote desktop, the easiest way is to start a
nice graphical text editor like this:

gedit environment.yml

If you wanted to analyze actual data with it, you would probably need to add mne, pandas, etc. to it. But we can leave
it like this.

4 Chapter 1. What is this?

https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#creating-an-environment-file-manually

obob𝑐𝑜𝑛𝑑𝑜𝑟𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.0.9

Copy-paste the content in there, save and exit and go back to the terminal.

You can now create the environment like this:

mamba env create -p ./.venv

When this is done, you must activate the environment:

conda activate ./.venv

And then start Spyder (a Python editor) like this:

spyder

Before you go on, make sure that:

1. The folder that is shown in the box on the top right, just below the menu bar is the folder you just created. If not,
click the folder button to the right and navigate to the correct one.

2. Just below, you find a pane which has four different tab options: “Help”, “Variable Explorer”, “Plots” and “Files”.
Make sure “File” is selected.

You should now see the environment.yml file that we created before.

1.3 How to use obob_condor

Submitting Jobs to the OBOB cluster is quite simple using the obob_condor package.

1.3.1 Make sure you are on your bomber

Accessing the cluster requires the code to be run on the bomber as only those are connected to the cluster.

All the code also needs to be on /mnt/obob because the nodes also need access to them.

You also need to be in a python environment that has obob_condor in its dependencies. If you do not now what this
means, please take a look at How to create a python environment for you cluster jobs.

1.3.2 Define a simple job

The first thing you need to do is define what your job should do. You therefore write a class that derives from
obob_condor.Job. The only things you have to do is to supply a run method.

import obob_condor

class MyJob(obob_condor.Job):
def run(self):

print('Hello World!')

The job class can be anywhere in your sourcecode tree. It can be defined in the script you are running, in a python
module or package. As long as you can import it, it is ok.

1.3. How to use obob_condor 5

obob𝑐𝑜𝑛𝑑𝑜𝑟𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.0.9

1.3.3 Define a job that takes arguments

Your job can also take any kind of arguments:

import obob_condor

class JobWithArgs(obob_condor.Job):
def run(self, normal_arg, key_arg='my_default'):

print('normal_arg=%s\nkey_arg=%s' % (str(normal_arg), str(key_arg)))

1.3.4 Getting and configuring the JobCluster

In order to submit your job, you need to get an instance of obob_condor.JobCluster. The constructor of this class
has a lot of keyword arguments. You can set none, some or all of them. They all have quite sensible defaults:

import obob_condor

my_jobs = obob_condor.JobCluster(required_ram='6G')

Now we have a JobCluster that asks for 6GB of RAM per Job.

1.3.5 Adding jobs to the JobCluster

In order to add the jobs, use the obob_condor.JobCluster.add_job() method:

my_jobs.add_job(MyJob)
my_jobs.add_job(JobWithArgs, 'this_is_the_normal_arg', key_arg='and this the key arg')

1.3.6 Adding multiple jobs with just one call

A common use case of job submission is that you want to run the same job on a number of different combinations of
parameters.

Let’s consider a job like this:

class AverageData(obob_condor.Job):
def run(self, subject_id, condition, lp_filter_freq)

...

And you have a list of subject_ids and conditions:

subject_ids = [
'19800908igdb',
'19990909klkl',
'17560127anpr']

conditions = [
'visual',
'auditory']

We want to run the jobs for all combinations of subject_ids and conditions. This is what obob_condor.
PermuteArgument is for:

6 Chapter 1. What is this?

obob𝑐𝑜𝑛𝑑𝑜𝑟𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.0.9

from obob_condor import PermuteArgument

my_jobs.add_job(AverageData, PermuteArgument(subject_ids), PermuteArgument(conditions),␣
→˓30)

This call adds 6 jobs, one for every combination of subject_ids and conditions.

This works for all kinds of arguments (normal ones and keyword arguments).

1.3.7 Submitting the Job

Now, all you need to do is to call submit:

my_jobs.submit()

For more advanced uses take a look at the Reference.

1.4 Automatically generating filenames for your jobs

1.4.1 Introduction

A common pattern for cluster jobs is:

1. They accept a bunch of parameters like:

1. subject_id

2. condition

3. etc. . .

2. They load the respective data

3. Do some computation

4. Save the data to the storage

A common analysis also has more than one cluster job. Normally, each job stores its output in a separate folder. A
good practise is that each subject gets their sub_folder in this job folder. Furthermore, all the job folders are normally
in one “meta” folder.

Let’s assume our project is called “super_markov”. This means, you would have a folder like: /mnt/obob/staff/
hmustermann/super_markov/data. You might then have a cluster job called Preprocess. The data of the subject
19800908igdb should thus be stored in /mnt/obob/staff/hmustermann/super_markov/data/Preprocess/
19800908igdb/...

Let’s take this one step further and assume, for every subject, we have two conditions, ordered and random and we
run separate jobs for each of them.

So, the final filenames would then look like:

• /mnt/obob/staff/hmustermann/super_markov/data/Preprocess/19800908igdb/
19800908igdb__condition_ordered.dat

• /mnt/obob/staff/hmustermann/super_markov/data/Preprocess/19800908igdb/
19800908igdb__condition_random.dat

1.4. Automatically generating filenames for your jobs 7

obob𝑐𝑜𝑛𝑑𝑜𝑟𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.0.9

Does this not look like something we should automate?

And one further issue: A cluster job might just die. . . Imagine, you submit 100 jobs and 2 of them do not complete.
You want to resubmit only the two jobs that failed.

Ok, let’s automate that as well!

1.4.2 Say hello to obob_condor.AutomaticFilenameJob

obob_condor.AutomaticFilenameJob is a subclass of obob_condor.Job. This means that it basically does all the
same things and you use it in a very similar way: You override the obob_condor.AutomaticFilenameJob.run()
method with the commands that you want to run on the cluster and it will do just that.

However, it introduces some additional methods that automate the file naming process.

For this to work properly, however, you should do some preparations.

1.4.3 Derive a Job class for the project

In order to use a common data folder for the whole project, the easiest way is to create a project specific Job class:

from obob_condor import AutomaticFilenameJob

class MyProjectJobs(AutomaticFilenameJob):
base_data_folder = '/mnt/obob/staff/hmustermann/super_markov/data'

You see that the code is really simple. We create the class, derive it from obob_condor.AutomaticFilenameJob
and the only thing we add to this class is that we set obob_condor.AutomaticFilenameJob.base_data_folder.

1.4.4 Write your Job classes for the individual jobs

Writing the individual job classes is as straight forward as you already know with the only exception that we derive
those classes from the project wide job class we just created.

import joblib # This is a very good library for saving python objects.
from obob_condor import JobCluster, PermuteArgument

class Preprocess(MyProjectJobs):
job_data_folder = 'Preprocessing'

def run(self, subject_id, condition):
here you load your data
now you do you processing

now we want to save the data...
joblib.dump(result_data, self.full_output_path)

job_cluster = JobCluster()
job_cluster.add_job(

Preprocess,
subject_id=PermuteArgument(['19800908igdb', '19700809abcd']),
condition=PermuteArgument(['ordered', 'random'])

(continues on next page)

8 Chapter 1. What is this?

obob𝑐𝑜𝑛𝑑𝑜𝑟𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.0.9

(continued from previous page)

)

job_cluster.submit()

As you can see, the Preprocess job gets gets executed four times (once for every combination of the subject_id
and condition arguments).

Additionally, it set the job_data_folder property to define, in which subfolder of base_data_folder (which we
defined in MyProjectJobs above) the data would end up in.

self.full_output_path now automatically generate a filename like this:

'base_data_folder/job_data_folder/subject_id/subject_id__firstKwargName_value__
→˓secondKwargName_value.dat'

So, in our case, this would be for the first job:

'/mnt/obob/staff/hmustermann/super_markov/data/Preprocessing/19800908igdb/19800908igdb__
→˓condition_ordered.dat'

1.4.5 Things to keep in mind

All folders are created automatically

If you do not want this, you can set obob_condor.AutomaticFilenameJob.create_folder to False.

Only keyword arguments are used for filename creation

You must specify the arguments as keyword arguments to be used for the filename when you add the job.

The order of the keyword arguments in the filename is the order to the arguments in the add_job
call.

So, keep it constant!

There are more advanced usages

Like you can exclude kwargs from going into the filename. In this case, it might make sense to add a hash value instead.
For instance if you iterate over multiple time regions.

For all information, check out the reference.

1.4. Automatically generating filenames for your jobs 9

obob𝑐𝑜𝑛𝑑𝑜𝑟𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.0.9

1.5 Reference

class obob_condor.JobCluster(required_ram='2G', adjust_mem=True, request_cpus=1, jobs_dir='jobs',
inc_jobsdir=True, owner=None, python_bin=None, working_directory=None,
singularity_image=None)

This is the main class, the controller of obob_condor. It collects all the jobs and takes care of submitting them
to the cluster. It also contains information about how much RAM the jobs need, how many CPUs are requested
etc.

Parameters

• required_ram (str, float, int, optional) – The amount of RAM required to run one Job
in megabytes. A string like “2G” or “200M” will be converted accordingly.

• adjust_mem (bool, optional) – If True, the job will be restarted automatically if it gets killed
by condor because it uses too much RAM.

• request_cpus (int, optional) – The number of CPUs requested

• jobs_dir (str, optional) – Folder to put all the jobs in. This one needs to be on the shared
filesystem (so somewhere under /mnt/obob)

• inc_jobsdir (str, optional) – If this is set to True (default), jobs_dir is the parent folder for
all the jobs folders. Each time a job is submitted, a new folder is created in the jobs_dir
folder that contains all the necessary files and a folder called “log” containing the log files.
If jobs_dir is set to False, the respective files are put directly under jobs_dir. In this case,
jobs_dir must either be empty or not exist at all to avoid any side effects.

• owner (str, optional) – Username the job should run under. If you submit your jobs from
one of the bombers, you do not need to set this. If you have set up your local machine to
submit jobs and your local username is different from your username on the cluster, set owner
to that username.

• python_bin (str, optional) – The path to the python interpreter that should run the jobs. If
you do not set it, it gets chosen automatically. If the python interpreter you are using when
submitting the jobs is on /mnt/obob/ that one will be used. If the interpreter you are using is
not on /mnt/obob/ the default one at /mnt/obob/obob_mne will be used.

• working_directory (str, optional) – The working directory when the jobs run.

• singularity_image (str, optional) – Set this to a singularity image to have the jobs execute
in it. Can be a link to a local file or to some online repository.

add_job(job, *args, **kwargs)
Add one job to the JobCluster. All further arguments will be passed on to the Job.

Parameters

• job (child of obob_condor.Job) – The job class to be added.

• *args – Variable length argument list.

• **kwargs – Arbitrary keyword arguments.

run_local()

Runs the added jobs locally.

submit(do_submit=True)
Runs the added jobs on the cluster.

10 Chapter 1. What is this?

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

obob𝑐𝑜𝑛𝑑𝑜𝑟𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.0.9

Parameters do_submit (bool, optional) – Set this to false to not actually submit but prepare all
files.

class obob_condor.Job(*args, **kwargs)
Abstract class for Jobs. This means, in order to define you own jobs, they need to be a subclass of this one.

You must implement (i.e. define in your subclass) the run() method. The run method can take as many argu-
ments as you like. Only the types of arguments are restricted because they need to be saved to disk. In general,
strings, numbers, lists and dictionaries are fine.

You can implement shall_run(). This can be used to see whether some output file already exists and restrict
job submission to missing files.

run(*args, **kwargs)
Implement this method to do the job.

shall_run(*args, **kwargs)
This is an optional method. It gets called with the same arguments as the run() method, before the job is
submitted. If it returns True, the job is submitted, if it returns False, it is not.

class obob_condor.AutomaticFilenameJob(*args, **kwargs)
Bases: obob_condor.job.Job

Abstract class for Jobs providing automatic filename generation.

In order for this to work, you need to:

1. Set base_data_folder and job_data_folder as a class attribute.

2. If you use shall_run(), you need to do the super call.

This class then automatically creates the filename for each job using all the keyword arguments supplied.

Please take a look at Automatically generating filenames for your jobs for detailed examples.

Variables

• base_data_folder (str or pathlib.Path) – The base folder for the data. Is normally
set once for all jobs of a project.

• job_data_folder (str or pathlib.Path) – The folder where the data for this job
should be saved.

• exclude_kwargs_from_filename (list) – Normally, all keyword arguments are used to
build the filename. if you want to exclude some of them, put the key in the list here.

• include_hash_in_fname (bool) – Include a hash of all arguments in the filename. This
is helpful if you excluded some keyword arguments from filename creation but still need to
get distinct filename.

• run_only_when_not_existing (bool) – If true, this job will only run if the file does not
already exist.

• create_folder (bool) – If true, calling folders are created automatically

• data_file_suffix (str, optional) – The extension of the file. Defaults to .dat

classmethod get_full_data_folder()

Return the data folder for this job (i.e. base_data_folder plus job_data_folder).

shall_run(*args, **kwargs)
This is an optional method. It gets called with the same arguments as the run() method, before the job is
submitted. If it returns True, the job is submitted, if it returns False, it is not.

1.5. Reference 11

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

obob𝑐𝑜𝑛𝑑𝑜𝑟𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.0.9

property full_output_path

The full path to the output file.

Type pathlib.Path

property output_filename

The filename for this subject.

Type str

property output_folder

The output folder for this subject.

Type pathlib.Path

class obob_condor.PermuteArgument(args)
This is a container for to-be-permuted arguments. See the example in the introductions for details.

12 Chapter 1. What is this?

https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

• search

13

obob𝑐𝑜𝑛𝑑𝑜𝑟𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.0.9

14 Chapter 2. Indices and tables

PYTHON MODULE INDEX

o
obob_condor, 10

15

obob𝑐𝑜𝑛𝑑𝑜𝑟𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.0.9

16 Python Module Index

INDEX

A
add_job() (obob_condor.JobCluster method), 10
AutomaticFilenameJob (class in obob_condor), 11

F
full_output_path (obob_condor.AutomaticFilenameJob

property), 11

G
get_full_data_folder()

(obob_condor.AutomaticFilenameJob class
method), 11

J
Job (class in obob_condor), 11
JobCluster (class in obob_condor), 10

M
module

obob_condor, 10

O
obob_condor

module, 10
output_filename (obob_condor.AutomaticFilenameJob

property), 12
output_folder (obob_condor.AutomaticFilenameJob

property), 12

P
PermuteArgument (class in obob_condor), 12

R
run() (obob_condor.Job method), 11
run_local() (obob_condor.JobCluster method), 10

S
shall_run() (obob_condor.AutomaticFilenameJob

method), 11
shall_run() (obob_condor.Job method), 11
submit() (obob_condor.JobCluster method), 10

17

	What is this?
	An introduction to Cluster Computing
	Introduction
	What is a cluster?
	General Remarks
	About Fairness

	How do I use the Cluster?
	What is going on on the cluster?
	How do I submit my first job?

	How to create a python environment for you cluster jobs
	Create a new python environment and make sure obob_condor gets installed in it

	How to use obob_condor
	Make sure you are on your bomber
	Define a simple job
	Define a job that takes arguments
	Getting and configuring the JobCluster
	Adding jobs to the JobCluster
	Adding multiple jobs with just one call
	Submitting the Job

	Automatically generating filenames for your jobs
	Introduction
	Say hello to obob_condor.AutomaticFilenameJob
	Derive a Job class for the project
	Write your Job classes for the individual jobs
	Things to keep in mind
	All folders are created automatically
	Only keyword arguments are used for filename creation
	The order of the keyword arguments in the filename is the order to the arguments in the add_job call.
	There are more advanced usages

	Reference

	Indices and tables
	Python Module Index
	Index

